A Graph Grammar Approach for Structure Synthesis of Mechanisms

Linda C. Schmidt and Harshawardhan Shetty
Department of Mechanical Engineering
University of Maryland
College Park, Maryland, 20742-3035 USA

Scott C. Chase
Key Centre of Design Computing
Department of Architectural and Design Science
University of Sydney, NSW 2006 Australia

ABSTRACT

This paper presents a general graph grammar methodology for structure synthesis of mechanisms. Much of current mechanism design is based on a systematic method popularized by Freudenstein, Mruthyunjaya, and Tsai (among others). A graph grammar is a more natural expression for a method that relies on algebraic abstractions of graph theoretic principles. Our proposed grammar rules add vertices and loops to a start graph to obtain desired structural requirements. A grammar adaptation of an existing linear time algorithm for the detection of isomorphism is presented. Also presented is a specialized grammar for the structure synthesis of Epicyclic Gear Trains. A valid graph grammar for structure synthesis of mechanisms enables both the eventual automation of general atlas construction and atlas construction for customized mechanism classes.